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OQutline

Neutrinos from the Sun, standard analysis
(brief summary)

SSM predictions vs experimental rates, MSW and
vacuum regions, day-night asymmetry; (sin®26, Am?2)
parameter space.

The the full neutrino parameter space.
w/4 < 6 < /2, different physics when matter effects
are included. Why 0 < 8 < w/2, Am? > 0 more
natural then 0 < 0 < w/4 for both signs of Am?2.

Solar matter effects are non-negligible for
vacuum oscillations!

MSW solutions are not necessarily confined
to 6 < n/4.

Global view of the 2—neutrino parameter
space.
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Solar neutrino spectrum
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Comparison of theory and
experiments

Total Rates: Standard Model vs. Experiment
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The most attractive explanation of the ob-
served deficit seems to be neutrino oscillations.

e The weak eigenstates are, in general, dif-
ferent from the mass eigenstates, just like
in the quark sector:

cosf|v1) + sin B|vy)
— sin 9|V1> -+ cos 9|V2)

[ve)

V)

e Evidence for neutrino oscillations has been
observed in atmospheric neutrinos.




Two Mechanisms

e Long-wavelength oscillations in vacuum

. . Am?
P =1—sin220sin2 (1.27 g’ L)

If oscillation length ~ 1 astronomical unit,
one can achieve the necessary energy-dependent
pattern of suppression.

e Matter-enhanced flavor conversion in the
Sun (4 matter effects in the Earth)




Vacuum oscillation solutions
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John Bahcall, Plamen Krastev, Alexei Smirnov,
“"WHAT WILL THE FIRST YEAR OF SNO
SHOW?”, hep-ph/9911248
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MSW solutions
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Day—night asymmetry

Among other well-studied phenomena is the
effect of the Earth matter on the electron neu-
trino survival probability.

During the night solar neutrinos travel through
the mantle and the outer core of the Earth.
For a certain range of parameters the interac-
tions with the Earth matter lead to regenera-
tion of electron neutrinos. The resulting day—
night asymmetry, if detected would be ‘“smok-
ing gun” signature of neutrino oscillations.
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J. Bahcall, P. Krastev, “Does the Sun
Appear Brighter at Night in Neutrinos?”,
hep-ph/9706239
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What happens to the day—night asymmetry at
maximal mixing? In hep-ph/9706239 it was
assumed that it vanishes. This was generally
believed until the spring of 1999.

Alan H. Guth, Lisa Randall, Mario Serna, “DAY

- NIGHT AND ENERGY VARIATIONS FOR
MAXIMAL NEUTRINO MIXING ANGLES", hep-
pPh/9903464. ‘

Pointed out that the asymmetry is nonzero at
maximal mixing and continuous.
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Question: Can one extend the scan beyond
sin220 = 1, so all contours of D/N asymmetry

would close?

Related: What is the physical range of 67
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Recall the definition

lve) = cosO|vy) + sin@|vo)

lvu) = —sinf|vy) 4+ cosb|vy)
Invariant under 8 — 0 + m, |ve) = —|ve), |vu) —
—|vu), i e. [-w/2,7/2] and [n/2,3m/2] are
equivalent.

Also invariant under 6 — —0, |v.) — —|wu),
lvo) — —|vo), hence 6 € [0,7/2].

Finally, it can also be made invariant under
0 — n/2—-0, |vu) - —|vu) by relabeling the mass

eigenstates |v1) > |vp), i.e. Am?2 — —Am?.

Thus,
e either 0< 0 < n/2 and Am? >0, or

e 0<6<m/4 and Am? can have either sign.

16




What happens to the contours, if we extend
the plot to 6 > w/47

Can choose sin26 as a variable and study 0 <
sin20 < 1.
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Why is the 8 > /4 half of the parameter space
commonly neglected?

Possible reasons:

e For 8 > w/4 there is no level crossing in the
Sun. The survival probability in the case
of the MSW oscillations is always greater
than 1/2.

— “not interesting”

e The vacuum formula is symmetric with re-
spectto @ > n/2 -6
== “the vacuum solutions in 8 > n/4 are
mirror images”

Next I'll reexamine both of these points.
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Hamiltonian in matter

For electron neutrino oscillations into another
active species, the Hamiltonian has the form

const +
2
—4m2 00520 + V2G N () %b"; sin 26
—E—%mf sin 26 aF-cos26 |

The eigenvalues of the new matrix are

~? A 2\ 2
am” + ™) sin226
4F, 4F,

2 1/2
+ (Am 520 ‘TCFA”())} ,
4E, >

and the new mixing angle is given by

cos 20p,(z) =

Am? V2G o Ne(x)
ZE, COs 20— 5

2 ———_ 2
Am? 2 2G 1 Ne(x)
\/( 45’;) sin 29+(4Eu Cos 20— "/ )

12




Electron density profile of the
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Level jumping probability

The level jumping probability P. depends on
the rate of change of the electron density in
the Sun.

In the exponential profile approximation (ne o
exp(—r/rg)) it is given by

eYCos?0 _ 1
P =
y &7 -1 '’

Am?2 Am?2 0.863MeV
=2 = 1.22 ( ) :
i (10—-9ev2) E,

(ro = Rp/10.54)

e adiabatic: P, — 0; true when Am2 > 109
eV2(Ey/1 MeV), sin26 > (10~ eV2/Am?)
(Ev/1 MeV).

e extreme nonadiabatic: P, — cos20: true in
the opposite limit.
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The survival probability for neutrinos arriving
at the Earth (for Am?2 S5 1072 eV?)

P = P.cos?6+ (1 — P.)sin?4
Y Am2L
+ \/Pc(l—Pc)snnzecos 2.54 = +4],

v

The last term is responsible for oscillations in
vacuum. For sufficiently large mass splitting
(Am2 2 6 x 1079 eV?) this term averages out
to zero upon integration over energy.

Limits:

e adiabatic: P. — 0, P — sin?4.

‘o extreme nonadiabatic: P. — cos?0,

A 2
P — 1 —sin220sin? (1.27 g’ L) ;
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For Am2/E 2 1075 eV2/MeV one should take
into account that 6 < 7/2 in the core. Then

P = Py cos?6 + (1 — Py)sin?6,

where P; = P.;sin?0g + (1 — P.) cos? 6p.

For this Am?2 v >> 1, i.e. P.=0 and

P = cos? 6 cos? 0 + sin 6 sin? 6.

P increases with Am?2.

27




In the cases of vacuum oscillation solution,
Am?2 is low and the extreme non-adiabatic limit
is reached.

Oris it?

For low Am? the relevant region is close to the
Sun's surface, where the exponential approxi-
mation is bad.

The most reliable way is to compute F. nu-
merically.
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Level jumping probability in the vacuum
region for E, = 0.863 MeV (’Be neutrino).
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Notice that the variable is tan28! Symmetric
under § - n/2 — 0 on the log scale.
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Why choose tan26?

e We saw that sin220 is not very good

e We would like points § and /2 — 6 to be
symmetric

e \We also would like to use a log scale, to fit
all solutions on the same plot

tan?26 is just such a variable.
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Analytical expression for the correction

Retaining in the formula for P, also terms linear
in v, we obtain

P = 1—(1+%cos29)x
2
% sin? 26 sin? (1.27'&”; L + 6)

+ 0(v?)

The term linear in v contains cos 26, which is
manifestly non-invariant under 6 — n/2 — 0.
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For very small Am? the formula for the exp.
profile can be used with rg = Ry/18.4

Notice, that trying to guess the value of ro by
measuring the slope of the density profile at
the resonance point gives an inaccurate result.
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Allowed by Galhum rates at 20 CL
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Allowed by Gallium + SK rates at 3o CL
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Allowed by Homestake rates at 95% CL
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Global view of the parameter space
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Excluded by day—night asymmetry at
Super-Kamiokande
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Drop Homestake
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Am?(eV?
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Conclusions

In the presence of matter effects the full
physical range of mixing angle is 0 < 6 <
7/2. sin226 is not a very good choice of
parameter, tan246 is better.

MSW solutions are not necessarily confined
to 6 < /4.

Matter effects for Am2 ~ 10710109 eVv?
are non-negligible, especially for the low—
energy pp neutrinos.

It is useful to study the entire region Am? ~
10~11 — 103 eV?2 at once, without sepa-
rating MSW and vacuum regions.

Experiments are urged to present their re-
sults on the both sides of the parameter
space.
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Matter effects
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e a) P, m, € b) p, m, e

e Neutrinos interact with matter through the
charged and neutral current interactions.

e Neutrino interaction cross section with mat-
ter is very small, o ~ G%s/m = G%2E,me/T.
As a result, they are hard to detect.

e However, there is another effect. Neutrino
interactions with matter lead to the index
of refraction of the media.




Index of refraction is a phase phenomenon, re-
lated to the forward scattering amplitude for
a process. It modifies the neutrino masses
squared as follows:

m2  — m2 +V2GpEy(Ne(z) — Np(x)/2)
mg‘w — m2 _ —\2GpE,Nn(z)/2

Vu,r

The charged current diagram exists only for ve.

Notice that the effect is proportional to Gp,
not G%.

If there is no mixing between neutrinos of dif-
ferent generations, the effect still would be un-
observable. However, in the presence of mixing
the matter terms can have a dramatic effect
on neutrino oscillations by modifying the mix-
ing angle and Am? in matter.




